Advanced App Development
Master advanced Fiberwise app development with complete enterprise examples, including external API integration, AI-powered workflows, and human-in-the-loop processes.
Real-World Advanced App Examples
Learn advanced Fiberwise app development through two comprehensive examples that demonstrate enterprise-grade features including AI automation, complex workflows, and sophisticated user interfaces.
π Smart Document Processor
Upload documents, extract data with AI, and manage approval workflows
- Drag-and-drop file uploads
- AI-powered text extraction and classification
- Dynamic forms based on document types
- Multi-stage approval workflows
- Real-time processing status
π« Customer Support Portal
Complete ticketing system with AI assistance and agent dashboards
- External API integration for ticket creation
- AI sentiment analysis and auto-responses
- Human-in-the-loop approval processes
- Real-time agent collaboration
- Advanced reporting and analytics
Advanced Platform Features Demonstrated:
- Complex Data Models: Related entities with user isolation and validation
- AI Agent Integration: Multiple agents working together in processing pipelines
- Advanced UI Patterns: Dynamic components, real-time updates, and responsive design
- External Integration: REST APIs, webhooks, and third-party service connections
- Workflow Orchestration: Multi-step processes with conditional logic and human intervention
- Enterprise Security: User isolation, audit trails, and role-based access control
Document Processing Application
A complete AI-powered document processing system with file uploads, intelligent data extraction, and approval workflows.
Document Processing Flow
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β User Uploads ββββββ File Storage ββββββ AI Analysis β
β Document β β (Fiberwise) β β (LLM Agent) β
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β β β
βΌ βΌ βΌ
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β Status: uploadedββββββStatus: processingβββββStatus: completedβ
β (Dashboard) β β (Real-time) β β (With Results) β
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β β β
βΌ βΌ βΌ
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β User Reviews ββββββ AI Extracted ββββββ Final Data β
β on Dashboard β β Structured β β Stored in β
β β β Data β β Model β
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
Process Breakdown:
- Upload: User drags and drops documents into the web interface
- Storage: Files are securely stored with automatic metadata generation
- AI Analysis: LLM agents extract structured data and classify document types
- Real-time Updates: WebSocket connections keep the dashboard synchronized
- Review & Approval: Human users can review and modify AI-extracted data
- Final Storage: Approved data is committed to the database model
Complete App Manifest
# app_manifest.yaml - Advanced Document Processor
app:
name: Document Processor
app_slug: doc-processor
version: 1.0.0
description: AI-powered document processing with real-time status
entryPoint: index.js
icon: fas fa-file-alt
category: productivity
models:
- name: Document
model_slug: documents
user_isolation: enforced
fields:
- name: ID
field_column: id
type: uuid
is_primary_key: true
- name: Filename
field_column: filename
type: string
required: true
- name: Status
field_column: status
type: string
default: "uploaded"
validations:
enum: ["uploaded", "processing", "completed", "failed"]
- name: Document Type
field_column: doc_type
type: string
description: "AI-determined document category"
- name: Extracted Data
field_column: extracted_data
type: json
description: "AI-extracted structured data"
- name: Processing Notes
field_column: notes
type: text
- name: Confidence Score
field_column: confidence
type: decimal
- name: Created At
field_column: created_at
type: timestamp
default: CURRENT_TIMESTAMP
is_system_field: true
routes:
- path: /
component: document-dashboard
title: Dashboard
icon: fas fa-tachometer-alt
- path: /upload
component: document-upload
title: Upload
icon: fas fa-cloud-upload-alt
- path: /documents/:id
component: document-detail
title: Document Details
icon: fas fa-file-alt
agents:
- name: documentAnalyzer
description: Analyze and extract data from documents
agent_type_id: llm
version: 1.0.0
input_schema:
type: object
properties:
filename:
type: string
content_preview:
type: string
output_schema:
type: object
properties:
document_type:
type: string
enum: ["invoice", "contract", "receipt", "form", "other"]
confidence:
type: number
extracted_fields:
type: object
summary:
type: string
functions:
- name: processDocument
description: Process uploaded document with AI analysis
version: 1.0.0
input_schema:
type: object
properties:
document_id:
type: string
output_schema:
type: object
properties:
success:
type: boolean
processing_id:
type: string
estimated_completion:
type: string
pipelines:
- id: document_processing_pipeline
name: Document Processing Pipeline
description: Complete document analysis and data extraction workflow
trigger:
type: data_change
model: documents
conditions:
- field: status
operator: equals
value: "uploaded"
steps:
- id: analyze_document
name: AI Document Analysis
type: agent_activation
agent_id: documentAnalyzer
input_mapping:
filename: "${trigger.data.filename}"
content_preview: "${trigger.data.content_preview}"
- id: update_results
name: Update Document with Results
type: data_update
model: documents
item_id: "${trigger.item_id}"
data:
doc_type: "${steps.analyze_document.output.document_type}"
confidence: "${steps.analyze_document.output.confidence}"
extracted_data: "${steps.analyze_document.output.extracted_fields}"
status: "completed"
notes: "${steps.analyze_document.output.summary}"
Key Features Demonstrated
π File Upload & Management
Drag-and-drop interface with progress tracking and real-time status updates
π§ AI Document Analysis
Intelligent document classification and structured data extraction using LLM agents
β‘ Pipeline Automation
Automated processing workflows triggered by data changes with conditional logic
π Real-time Dashboard
Live processing status with WebSocket updates and comprehensive metrics
Enterprise Customer Support System
A complete enterprise support system with external API integration, AI processing, and human workflow management.
Support System Architecture
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β External API ββββββ Fiberwise API ββββββ Support App β
β (Python SDK) β β (REST/WS) β β (Dashboard) β
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β β β
βΌ βΌ βΌ
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β Support Tickets ββββββ AI Agents ββββββ Human Agents β
β (Model Data) β β (Classification)β β (Dashboard) β
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β β β
βΌ βΌ βΌ
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β Pipelines ββββββ Workflows ββββββ Notifications β
β (Automation) β β (Human Steps) β β (Real-time) β
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
π« Support Ticket Management
Dynamic data models for tickets, responses, and escalations with automatic user attribution and role-based access.
π€ AI Processing Pipeline
Automated ticket classification, sentiment analysis, and response generation using multiple specialized LLM agents.
π₯ Human Workflow Integration
Approval processes, escalation management, and agent collaboration tools with real-time updates.
π External API Integration
REST endpoints for ticket creation, Python SDK integration, and webhook notifications for external systems.
Complete Support System Manifest
# app_manifest.yaml - Enterprise Support System
app:
name: Customer Support Portal
app_slug: support-portal
version: 2.0.0
description: Enterprise customer support system with AI automation and human workflows
entryPoint: index.js
icon: fas fa-headset
category: customer_service
models:
- name: Support Ticket
model_slug: support_tickets
user_isolation: enforced
fields:
- name: ID
field_column: id
type: uuid
is_primary_key: true
- name: Customer Email
field_column: customer_email
type: string
required: true
validations:
format: email
- name: Subject
field_column: subject
type: string
required: true
validations:
max_length: 200
- name: Description
field_column: description
type: text
required: true
- name: Status
field_column: status
type: string
default: "new"
validations:
enum: ["new", "processing", "waiting_review", "resolved", "closed"]
- name: Priority
field_column: priority
type: string
default: "medium"
validations:
enum: ["low", "medium", "high", "urgent"]
- name: Category
field_column: category
type: string
validations:
enum: ["technical", "billing", "general", "urgent", "feature_request"]
- name: AI Response
field_column: ai_response
type: text
description: "Generated AI response"
- name: Human Response
field_column: human_response
type: text
description: "Final approved response"
- name: Sentiment Score
field_column: sentiment_score
type: decimal
description: "Customer sentiment analysis result"
- name: Confidence Score
field_column: confidence_score
type: decimal
description: "AI classification confidence"
- name: Escalation Required
field_column: escalation_required
type: boolean
default: false
- name: Assigned Agent
field_column: assigned_agent
type: string
description: "Human agent assigned to ticket"
- name: Resolution Time
field_column: resolution_time
type: timestamp
description: "When ticket was resolved"
- name: Customer Satisfaction
field_column: satisfaction_rating
type: integer
validations:
min: 1
max: 5
- name: Created At
field_column: created_at
type: timestamp
default: CURRENT_TIMESTAMP
is_system_field: true
routes:
- path: /
component: support-dashboard
title: Support Dashboard
icon: fas fa-tachometer-alt
- path: /tickets
component: ticket-list
title: All Tickets
icon: fas fa-list
- path: /tickets/:id
component: ticket-detail
title: Ticket Details
icon: fas fa-ticket-alt
- path: /analytics
component: support-analytics
title: Analytics
icon: fas fa-chart-bar
agents:
- name: ticketClassifier
description: Classify and prioritize support tickets
agent_type_id: llm
version: 1.0.0
input_schema:
type: object
properties:
subject:
type: string
description:
type: string
customer_email:
type: string
output_schema:
type: object
properties:
category:
type: string
enum: ["technical", "billing", "general", "urgent", "feature_request"]
priority:
type: string
enum: ["low", "medium", "high", "urgent"]
confidence:
type: number
reasoning:
type: string
- name: sentimentAnalyzer
description: Analyze customer sentiment and urgency
agent_type_id: llm
version: 1.0.0
input_schema:
type: object
properties:
ticket_content:
type: string
output_schema:
type: object
properties:
sentiment:
type: string
enum: ["positive", "neutral", "negative", "frustrated", "angry"]
urgency_indicators:
type: array
satisfaction_risk:
type: string
enum: ["low", "medium", "high", "critical"]
- name: responseGenerator
description: Generate AI responses for support tickets
agent_type_id: llm
version: 1.0.0
input_schema:
type: object
properties:
ticket:
type: object
classification:
type: object
company_context:
type: object
output_schema:
type: object
properties:
response_text:
type: string
requires_human_review:
type: boolean
suggested_actions:
type: array
escalation_needed:
type: boolean
functions:
- name: createTicketFromAPI
description: Create support ticket from external API call
version: 1.0.0
input_schema:
type: object
properties:
customer_email:
type: string
subject:
type: string
description:
type: string
source:
type: string
output_schema:
type: object
properties:
success:
type: boolean
ticket_id:
type: string
processing_started:
type: boolean
pipelines:
- id: new_ticket_processing
name: New Ticket AI Processing
description: Complete AI processing workflow for new support tickets
trigger:
type: data_change
model: support_tickets
conditions:
- field: status
operator: equals
value: "new"
steps:
- id: classify_ticket
name: Classify and Prioritize
type: agent_activation
agent_id: ticketClassifier
input_mapping:
subject: "${trigger.data.subject}"
description: "${trigger.data.description}"
customer_email: "${trigger.data.customer_email}"
- id: analyze_sentiment
name: Sentiment Analysis
type: agent_activation
agent_id: sentimentAnalyzer
input_mapping:
ticket_content: "${trigger.data.subject} ${trigger.data.description}"
- id: generate_response
name: Generate AI Response
type: agent_activation
agent_id: responseGenerator
input_mapping:
ticket: "${trigger}"
classification: "${steps.classify_ticket.output}"
company_context: {}
- id: update_ticket_ai_data
name: Update Ticket with AI Results
type: data_update
model: support_tickets
item_id: "${trigger.item_id}"
data:
category: "${steps.classify_ticket.output.category}"
priority: "${steps.classify_ticket.output.priority}"
confidence_score: "${steps.classify_ticket.output.confidence}"
sentiment_score: "${steps.analyze_sentiment.output.sentiment}"
ai_response: "${steps.generate_response.output.response_text}"
escalation_required: "${steps.generate_response.output.escalation_needed}"
status: "${steps.generate_response.output.requires_human_review ? 'waiting_review' : 'processing'}"
# Human-in-the-Loop Workflows
workflows:
- id: response_approval_workflow
name: AI Response Review & Approval
description: Human review process for AI-generated responses
trigger:
type: data_change
model: support_tickets
conditions:
- field: status
operator: equals
value: "waiting_review"
steps:
- id: assign_to_agent
name: Assign to Human Agent
type: human_task
assignee_type: role
assignee_value: "support_agent"
task_data:
title: "Review AI Response for Ticket"
description: "Please review the AI-generated response and approve or modify as needed"
ticket_id: "${trigger.item_id}"
ai_response: "${trigger.data.ai_response}"
customer_email: "${trigger.data.customer_email}"
priority: "${trigger.data.priority}"
actions:
- id: approve_response
label: "Approve & Send"
type: data_update
model: support_tickets
item_id: "${trigger.item_id}"
data:
human_response: "${trigger.data.ai_response}"
status: "resolved"
assigned_agent: "${action.user_id}"
resolution_time: "${now()}"
- id: modify_response
label: "Modify Response"
type: form_input
fields:
- name: modified_response
type: textarea
label: "Modified Response"
default: "${trigger.data.ai_response}"
required: true
on_submit:
type: data_update
model: support_tickets
item_id: "${trigger.item_id}"
data:
human_response: "${action.form.modified_response}"
status: "resolved"
assigned_agent: "${action.user_id}"
resolution_time: "${now()}"
- id: escalate_ticket
label: "Escalate to Senior"
type: data_update
model: support_tickets
item_id: "${trigger.item_id}"
data:
status: "escalated"
escalation_required: true
assigned_agent: "${action.user_id}"
Advanced Features Demonstrated
π External API Integration
REST endpoints for ticket creation with Python SDK authentication and webhook support
π€ Multi-Agent AI Pipeline
Coordinated AI agents for classification, sentiment analysis, and response generation
π₯ Human-in-the-Loop Workflows
Approval processes, escalation management, and agent collaboration with role-based assignment
π Advanced Analytics
Real-time metrics, sentiment tracking, and performance analytics with customer satisfaction scoring
Python Agent Implementations
Here are the actual Python implementation files for the LLM agents defined in the manifest. These provide proper prompts and business logic for automated support ticket processing:
Complete Agent Implementations Include:
- Response Generator: 400+ lines with intelligent prompt engineering and fallback responses
- Ticket Classifier: 350+ lines with rule-based + LLM hybrid classification
- Sentiment Analyzer: 300+ lines with multi-layered sentiment detection
- Production Features: Error handling, confidence scoring, escalation logic
π€ Response Generator Agent
File: agents/response_generator.py
- Context-aware response generation with customer history
- Company policy integration and template-based responses
- Human review logic based on confidence thresholds
- Escalation detection and suggested follow-up actions
- LLM integration with intelligent fallback mechanisms
π·οΈ Ticket Classifier Agent
File: agents/ticket_classifier.py
- Rule-based + LLM hybrid classification approach
- Category detection (technical, billing, urgent, feature_request)
- Priority scoring with customer tier considerations
- Confidence metrics and escalation recommendations
- Estimated resolution time calculation
π Sentiment Analyzer Agent
File: agents/sentiment_analyzer.py
- Multi-layered sentiment analysis (positive, neutral, negative, frustrated, angry)
- Urgency indicator extraction with pattern recognition
- Customer satisfaction risk assessment
- Emotional intensity scoring and escalation risk evaluation
- Actionable recommendations for support teams
Key Implementation Features
Example: Response Generator Core Logic
# Core response generation with context
async def run(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
"""Generate contextual support response with AI and business logic"""
# Extract ticket and classification data
ticket = input_data.get('ticket', {})
classification = input_data.get('classification', {})
# Get customer context for personalization
customer_context = await self._get_customer_context(customer_email)
# Build comprehensive prompt with company policies
response_prompt = self._build_response_prompt(
ticket_data, classification, customer_context, company_context
)
# Generate response using LLM with fallback
llm_response = await self._generate_llm_response(response_prompt)
# Determine human review requirements
requires_review = self._requires_human_review(
category, priority, sentiment, confidence, processed_response
)
return {
"response_text": processed_response,
"requires_human_review": requires_review,
"suggested_actions": suggested_actions,
"escalation_needed": escalation_needed,
"confidence_score": confidence
}
Example: Intelligent Classification Logic
# Hybrid classification approach
def _combine_classifications(self, rule_based: Dict, llm_based: Dict,
customer_context: Dict) -> Dict[str, Any]:
"""Combine rule-based and LLM results intelligently"""
# Start with rule-based baseline
final_category = rule_based['category']
final_confidence = rule_based['confidence']
# Override with LLM if higher confidence
if llm_based.get('confidence', 0) > final_confidence:
final_category = llm_based.get('category', final_category)
final_confidence = llm_based.get('confidence', final_confidence)
# Premium customer tier adjustments
if customer_context.get('tier') == 'premium':
if final_priority == 'low':
final_priority = 'medium'
final_confidence = min(final_confidence + 0.1, 1.0)
return final_classification
Example: Sentiment Analysis with Risk Assessment
# Advanced sentiment analysis
def _assess_satisfaction_risk(self, sentiment_data: Dict,
urgency_indicators: List, escalation_risk: str) -> str:
"""Assess customer satisfaction risk level"""
risk_factors = 0
# Sentiment-based risk factors
if sentiment_data['sentiment'] in ['negative', 'frustrated', 'angry']:
risk_factors += 2
# Urgency indicators increase risk
if urgency_indicators:
risk_factors += len(urgency_indicators)
# Escalation indicators
if escalation_risk == 'high':
risk_factors += 3
# Return risk assessment
if risk_factors >= 5:
return 'critical'
elif risk_factors >= 3:
return 'high'
elif risk_factors >= 1:
return 'medium'
else:
return 'low'
Production Implementation Notes
Key Production Features:
- Error Handling: Comprehensive try-catch blocks with graceful degradation
- Logging: Structured logging for monitoring and debugging
- Confidence Scoring: All decisions include confidence metrics
- Fallback Mechanisms: Template-based responses when LLM fails
- Customer Context: Integration with customer history and preferences
- Business Logic: Company policy integration and compliance
- Scalability: Async/await patterns for high-throughput processing
- Security: Input validation and secure API integrations
External API Integration
Python SDK Integration with API Keys
Here's how external systems can create support tickets using the Fiberwise Python SDK with proper API key authentication:
# external_support_integration.py
"""
External system integration for creating support tickets
via Fiberwise API using proper authentication
"""
import asyncio
from fiberwise import FiberwiseClient
from typing import Dict, Any, Optional
class SupportTicketIntegration:
"""
Integration class for creating support tickets from external systems
"""
def __init__(self, api_key: str, app_slug: str, base_url: str = "https://api.fiberwise.ai"):
"""
Initialize with API credentials
Args:
api_key: Your Fiberwise API key
app_slug: The support portal app slug
base_url: Fiberwise API base URL
"""
self.client = FiberwiseClient(
api_key=api_key,
base_url=base_url
)
self.app_slug = app_slug
async def create_support_ticket(self,
customer_email: str,
subject: str,
description: str,
source: str = "external_api",
metadata: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
"""
Create a new support ticket that will be processed by AI agents
Args:
customer_email: Customer's email address
subject: Ticket subject line
description: Detailed description of the issue
source: Source system identifier
metadata: Additional metadata for the ticket
Returns:
Created ticket data with processing status
"""
try:
# Create the support ticket using Fiberwise data API
ticket_data = {
"customer_email": customer_email,
"subject": subject,
"description": description,
"status": "new", # Will trigger AI processing pipeline
"source": source,
"metadata": metadata or {}
}
# Call the createTicketFromAPI function
result = await self.client.functions.invoke(
app_slug=self.app_slug,
function_name="createTicketFromAPI",
input_data=ticket_data
)
if result.get('success'):
ticket_id = result.get('ticket_id')
# Wait briefly for AI processing to start
await asyncio.sleep(1)
# Get the updated ticket with AI analysis
ticket = await self.client.data.get_item(
app_slug=self.app_slug,
model_slug="support_tickets",
item_id=ticket_id
)
return {
"success": True,
"ticket_id": ticket_id,
"ticket_data": ticket,
"ai_processing_started": result.get('processing_started', False),
"classification": {
"category": ticket.get('data', {}).get('category'),
"priority": ticket.get('data', {}).get('priority'),
"confidence": ticket.get('data', {}).get('confidence_score')
}
}
else:
return {
"success": False,
"error": result.get('error', 'Unknown error creating ticket')
}
except Exception as e:
return {
"success": False,
"error": f"Integration error: {str(e)}"
}
async def get_ticket_status(self, ticket_id: str) -> Dict[str, Any]:
"""
Get current status and AI analysis results for a ticket
Args:
ticket_id: The ticket ID to check
Returns:
Current ticket status and AI results
"""
try:
ticket = await self.client.data.get_item(
app_slug=self.app_slug,
model_slug="support_tickets",
item_id=ticket_id
)
ticket_data = ticket.get('data', {})
return {
"success": True,
"ticket_id": ticket_id,
"status": ticket_data.get('status'),
"priority": ticket_data.get('priority'),
"category": ticket_data.get('category'),
"ai_response": ticket_data.get('ai_response'),
"human_response": ticket_data.get('human_response'),
"escalation_required": ticket_data.get('escalation_required'),
"assigned_agent": ticket_data.get('assigned_agent'),
"sentiment_score": ticket_data.get('sentiment_score'),
"confidence_score": ticket_data.get('confidence_score'),
"resolution_time": ticket_data.get('resolution_time'),
"satisfaction_rating": ticket_data.get('satisfaction_rating')
}
except Exception as e:
return {
"success": False,
"error": f"Error retrieving ticket: {str(e)}"
}
async def bulk_create_tickets(self, tickets: list) -> Dict[str, Any]:
"""
Create multiple support tickets efficiently
Args:
tickets: List of ticket dictionaries with customer_email, subject, description
Returns:
Bulk creation results with success/failure counts
"""
results = []
successful = 0
failed = 0
# Process tickets concurrently for efficiency
tasks = []
for ticket in tickets:
task = self.create_support_ticket(
customer_email=ticket['customer_email'],
subject=ticket['subject'],
description=ticket['description'],
source=ticket.get('source', 'bulk_import'),
metadata=ticket.get('metadata')
)
tasks.append(task)
# Execute all tasks concurrently
results = await asyncio.gather(*tasks, return_exceptions=True)
# Count successes and failures
for result in results:
if isinstance(result, dict) and result.get('success'):
successful += 1
else:
failed += 1
return {
"total_processed": len(tickets),
"successful": successful,
"failed": failed,
"results": results
}
# Example usage
async def main():
"""Example integration usage"""
# Initialize with your API credentials
integration = SupportTicketIntegration(
api_key="your_api_key_here",
app_slug="support-portal"
)
# Create a single support ticket
result = await integration.create_support_ticket(
customer_email="[email protected]",
subject="Login Issues After Update",
description="I cannot log into my account after the latest app update. Getting 'invalid credentials' error even with correct password.",
source="mobile_app",
metadata={"app_version": "2.1.3", "device": "iOS"}
)
if result['success']:
print(f"Ticket created: {result['ticket_id']}")
print(f"AI Classification: {result['classification']}")
# Check status after some processing time
await asyncio.sleep(5)
status = await integration.get_ticket_status(result['ticket_id'])
print(f"Current status: {status['status']}")
print(f"AI Response: {status['ai_response']}")
else:
print(f"Failed to create ticket: {result['error']}")
if __name__ == "__main__":
asyncio.run(main())
Advanced Development Patterns
ποΈ Architecture Patterns
- Multi-tenant data isolation
- Event-driven pipeline orchestration
- Microservice-style agent composition
- Real-time WebSocket integration
π€ AI Integration Patterns
- Multi-agent coordination
- Confidence-based decision making
- Human-in-the-loop workflows
- Fallback and error handling
π Workflow Patterns
- Conditional pipeline execution
- Approval and review processes
- Escalation management
- Automated notifications
πΌ Enterprise Patterns
- API-first integration
- Audit trails and compliance
- Performance monitoring
- Scalable architecture design
Next Steps
Ready to Build Advanced Apps?
These examples demonstrate the full power of the Fiberwise platform for enterprise applications. You now have:
- Complete working manifests for complex applications
- Production-ready Python agent implementations
- Advanced UI patterns and real-time features
- External API integration examples
- Human workflow and approval processes
Use these as starting points for your own advanced applications, or mix and match patterns to create something entirely new!
π« Support Ticket Management
Dynamic data models for tickets, responses, and escalations with automatic user attribution and role-based access.
π€ AI Processing Pipeline
Automatic ticket classification, sentiment analysis, response generation, and priority routing using multiple AI agents.
π₯ Human Workflow Integration
Agent dashboard for review, approval, escalation, and manual intervention with real-time collaboration.
π External API Integration
Secure REST API endpoints for ticket creation from external systems using Fiberwise API keys.